
Luz Ma. Pineda - Sr Technical Project Manager Localization

Geneviève Bolduc - Localization Developer

Everybody Gets a Screenshot!
Automating Screenshots for Linguistic Testing

2

AGENDA

1. Introduction
2. Software Localization Challenges
3. Risk Mitigation
4. Linguistic Testing
5. Automating Screenshots
6. Q & A

3

Introduction
Who we are

2013

Avigilon In-Country Reviewers
(Global Sales Team / Partners)

Paula Hunter
Sr Manager,

Localization & Tech Doc

Luz Pineda
Sr Technical Project Manager,

Localization

Eduardo La Selva
Project Manager,

Localization

Geneviève Bolduc
Localization Developer

Sammy Kaspar
Localization Developer

(Co-op/Intern)

4

Introduction
Content types we localize

Software UI

● ACC, ACC Mobile

● ACS + all Microservices

● ACM, ACM Mobile

● CCT, SDT

● Camera WebUI

● MSI Compass

● Open Path

Technical Documentation

● Software User Guides

● Hardware Installation Guides

● Hardware Operations Guides

● Datasheets / Spec sheets

● In-box Materials

● A&E Specs

Marketing and Digital Experience

● Websites, Landing pages

● Fact Sheets, Brochures, Catalogs

● Videos

● Ads, Social Media and Emails,

● Support Community, Partner Portal and

eCommerce

5

Software Localization
Scope and QA

Software
i18n

UI
Localization

Linguistic
Testing

Localization
Testing

Localization Team Dev and QA Teams
Our team is responsible for:

● Providing accurate translations

● Verifying that the software UI
displays correctly in all the
supported locales.

6

Software Localization Challenges
Level of Quality and Error Tolerance

Quality
The nature of our software
requires a high degree of
technical accuracy.

Industry Specific
Terminology

Terminology used in our industry
leaves room for ambiguity if no
context is provided.

Testing Environments
Testing environments similar to
the ones end users will use:

● Complexity
● Cost
● Privacy

7

Automation Testing
Risk Mitigation - Early QA

Source Language Review

The Localization team is included in
all the pull requests with changes in
the resource file. We ask the
developers to include:

● Screenshots showing the
changes in the UI

● Comments on the strings
being introduced

8

Automation Testing
Risk Mitigation - Context

Context for Translation

The same screenshot is sent to the
translators to provide context to the
strings within scope

9

Automation for Linguistic Testing
Pros and Cons

PROS CONS

It is possible to reuse existing testing
environments

It takes time to develop the scripts.

It makes Linguistic Testing affordable We don’t have the navigational feedback
that you get when testers execute test
cases manually.

Increase Testing Coverage It is not possible to cover all the strings with
automation.

10

Software Localization
Linguistic testing - Priorities

Low Priority

Error messages for edge
cases, strings visible to a
smaller group of users,
strings that historically
haven’t caused layout issues.

3

Medium Priority

Strings visible when
executing basic functionality,

warning messages and
Configuration views..

2

High Priority Strings

Strings visible to any user
while simply navigating
through the UI, Feature
priority and Escalations

1

11

Automating Screenshots

https://docs.google.com/file/d/1LjQZfUteS3Hftcy6JIuTih7zdPIQaqcm/preview

12

Automating Screenshots

1. Infrastructure
○ Creating a Map of Your UI
○ Working within the Codebase vs. Independent Testing Suites
○ Web Apps and Python/Selenium Automation
○ Desktop Apps and Python/PyWinAuto Automation

2. Iterative Process
○ Collecting Steps & Screenshots Iteratively

3. Limitations

13

Creating a Map of the UI

1. Identifying the Primary Views
○ What are all the pages or views users can immediately access by:

■ Logging in?
■ Clicking on the site menu?
■ Clicking on the visible tabs?

○ How can the text on these pages be maximized?
■ Is there a drop-down menu you can open?
■ Are there tabs you can open up?

2. Build Test Cases for these Views
○ From the information surmised above, you can create a list of main views and any triggers to

maximize text on the screen.

14

Creating a Map of the UI

15

Creating a Map of the UI

16

Working within the Codebase vs Independent Testing Framework
Codebase

PROS CONS

Maximizes existing infrastructure (using existing
methods, class, etc)

Processes can be slowed by build compilation
errors that do not pertain to localization

Codebase is maintained and impact to
localization scripts is noticeable by
non-localization developers

Dependent on development teams if issues arise

17

Working within the Codebase vs Independent Testing Framework
Independent Testing Framework

PROS CONS

Autonomy Responsibility to maintain and adapt to changes
in UI.

No external dependencies for compilation Higher Setup Overhead

Choice of tools and libraries No access to pre-existing methods from
codebase

18

Web Apps & Python/Selenium

1. Python
○ High level and object-based scripting language
○ User-friendly

● Uses English keywords that requires very easy interpretation (readable)
● Has few syntax complications compared to other languages for programming.

2. Selenium
○ Set of tools that firmly supports the quick development of test automation of web

applications.
○ Offers testing functions that are specially designed to the requirements of testing of a web

application.

19

Web Apps & Python/Selenium

Source: https://www.browserstack.com/guide/python-selenium-to-run-web-automation-test

20

Web Apps & Python/Selenium
Navigating through DOM Elements

Identifying Elements can be done by:
● Name: driver.find_element_by_name("name")
● CSS ID: driver.find_element_by_id(“id-search-field”)
● DOM Path: driver.find_element_by_xpath(“//input[@id=’id-search-field’]”)
● CSS Class: driver.find_element_by_class_name(“search-field”)

In our L10n team, we have found CSS ID and Class to be the most robust:
● Name can change with language change
● Xpath can change if different positionings surface

21

Desktop Apps & Python/pywinauto

1. Python
○ High level and object-based scripting language
○ User-friendly

i. Uses English keywords that requires very easy interpretation (readable_
ii. Has few syntax complications compared to other languages for programming.

2. pywinauto
○ pywinauto is a set of python modules to automate the Microsoft Windows GUI.
○ Simple: Allows you to send mouse and keyboard actions to windows dialogs and controls
○ Complex: Offers support for more complex actions like getting text data.

22

Desktop Apps & Python/pywinauto
GUI Tools

GUI Tools:
○ Inspect.exe
○ Spy++
○ Py_inspect

23

Desktop Apps & Python/pywinauto
Finding the Elements

Pywinauto Methods:
○ print_control_identifiers()

Source: https://pywinauto.readthedocs.io/en/latest/getting_started.html#how-to-know-magic-attribute-names

24

Desktop Apps & Python/pywinauto

25

Common Methods Across Platforms
Methods to Get Started

1. Application Methods
○ Method to launch application/browser
○ Method to Login
○ Method to Select the Language
○ Method to Take Screenshot

i. Libraries: Screenshot, pyautogui
2. Manipulating Elements Methods

○ Hovering over Elements
○ Clicking
○ Sending Keys
○ Selecting Items from a Dropdown

26

Iterative Processes
Keeping up with Agile

Once this infrastructure and these views are in place the goal is to keep in sync with production.
How can this be achieved?

1. As soon as you know the string is coming (design phase or PR):
○ Collect the steps
○ Collect any reference images
○ Write the Script
○ There is NO NEED to wait until the strings are translated to write these

2. When the strings are translated:
○ Run the script

27

Limitations & Path Forward

1. Limitations:
○ Writing the Script is Manual Process
○ Running the Script is Manual Process
○ Readiness of Script depends on Early Access of Strings

2. Path Forward:
○ Adding Screenshot Automation for Mobile apps
○ Automated Triggers

28

Q & A

